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We extend our earlier shear-transformation-zone theory of amorphous plasticity to include the effects of
thermally assisted molecular rearrangements. This version of our theory is a substantial revision and generali-
zation of conventional theories of flow in noncrystalline solids. As in our earlier work, it predicts a dynamic
transition between jammed and flowing states at a yield stress. Below that yield stress, it now describes
thermally assisted creep. We show that this theory accounts for the experimentally observed strain-rate depen-
dence of the viscosity of metallic glasses, and that it also captures many of the details of the transient
stress-strain behavior of those materials during loading. In particular, it explains the apparent onset of super-
plasticity at sufficiently high stress as a transition between creep at low stresses and plastic flow near the yield
stress. We also argue that there are internal inconsistencies in the conventional theories of these deformation
processes, and suggest ways in which further experimentation as well as theoretical analysis may lead to better
understanding of a broad range of nonequilibrium phenomena.
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I. INTRODUCTION

In the first paper of this series[1], we showed that ener-
getic constraints determine the principal ingredients of a
shear-transformation-zone(STZ) theory of amorphous plas-
ticity. That analysis pertained strictly to the behavior of non-
crystalline solids well below their glass temperatures. We
turn our attention here to the roles played by thermal fluc-
tuations, specifically, to the ways in which glassy materials
make transitions from thermally activated creep to viscoplas-
tic flow near yield stresses.

The atomic mechanisms of plastic deformation are most
often described as arising from dislocation motion. This pic-
ture breaks down in amorphous solids in which the disloca-
tion, being a lattice defect, ceases to provide a useful descrip-
tion of the microstructural dynamics. In this paper, we
describe further progress in the shear-transformation-zone
theory of amorphous plasticity that we originally constructed
to relate plastic deformation to specific microstructural de-
grees of freedom in noncrystalline solids. From its inception,
our STZ picture has been based on the ideas of Cohen, Turn-
bull, Spaepen, Argon, and others[2–5], who postulated that
plastic deformation in amorphous materials occurs at local-
ized sites usually called flow defects. A number of computa-
tional studies(e.g. Refs.[6,7]) have provided support for the
idea that a model based on localized defects can capture the
dynamics of deformation in such systems. The basic premise
of our version of the STZ theory is that these defects must be
dynamic entities that carry orientational information; and our
most striking conclusion is that, once these orientational de-
grees of freedom are taken into account, the system so de-
scribed exhibits an exchange of dynamic stability between
jammed and flowing states at a stress that we identify as a
yield stress.

Earlier defect theories of deformation in glassy materials
appear to us to be incomplete in important respects and, in
some cases, to contain physically unrealistic assumptions.
These theories generally start by assuming that the plastic
strain rateėpl is the product of the density of defectsn times
an Eyring rate factor[8]:

ėpl = 2nn expS−
DG

kBT
DsinhS V s

2kBT
D , s1.1d

wheren is a molecular vibration frequency,DG is an activa-
tion barrier,kB is Boltzmann’s constant,T is the temperature,
V is an atomic volume, ands is the deviatoric stress(i.e., the
shear stress). The authors of these theories then attempt to
describe the deformation dynamics by postulating equations
of motion forn. The most common choice for such an equa-
tion of motion has the form

ṅ = − krnsn − neqd + Psėpld. s1.2d

Here,kr is a thermally activated rate factor,neq is the thermal
equilibrium density of flow defects in the absence of external
driving forces, andP is a production rate that vanishes when
the strain rate is zero. An important example of the use of
this equation is the paper by De Heyet al. [9]. As we shall
see, our STZ theory has many features in common with Eq.
(1.2); indeed, some form of each of the terms in this equation
will appear here.

There are important differences, however. Theories based
on Eqs.(1.1) and (1.3) make no attempt to describe what
actually happens when a zone undergoes a shear transforma-
tion. Despite the fact that the Eyring formula in Eq.(1.1)
describes the balance between forward and backward transi-
tions in some kind of two-state system, the dynamics of
atomic scale structural rearrangements described by Eq.(1.1)
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is decoupled from the population dynamics described by Eq.
(1.2). The latter equations therefore implicitly assume that
there exists some fast relaxation mechanism—faster than any
other rate introduced explicitly in the theory—which causes
zones instantaneously to lose their memory of prior transfor-
mations.

Another major difference is in the choice of the produc-
tion functionP. In some theories,P is chosen to be linearly
proportional toėpl, which is impossible becauseP must be a
non-negative scalar whileėpl is a tensor that can change sign.
Such theories generally are used only in cases whereėpl is
positive, which may mean that the authors intend to use the
magnitude ofėpl in more general situations; but the latter
convention also would be unsatisfactory becauseuėplu is a
nonanalytic function that is not likely to arise from any first-
principles analysis of molecular mechanisms. In our own
earlier paper[10], we tried using the rate of plastic work,
s ėpl, in our analog of the production term. That function is a
scalar with a satisfactory physical interpretation but, as we
remarked there, it also suffers from a sign problem because it
can be negative during unloading. We believe that we have
solved this problem in Ref.[1], and shall make extensive use
of the technique described there in what follows.

Spaepen[3,4] has introduced an important modification of
the above ideas by postulating that the defect densityn is
directly determined by the excess free volume in the system,
v f, via a relation of the form

n ~ expS−
Vp

v f
D , s1.3d

whereVp is a molecular volume. Spaepen’s proposal is that
the production termP in Eq. (1.2) should be proportional to
the growth rate ofv f. More recently, Johnsonet al. [11] have
proposed a dynamic free volume model that includes a phe-
nomenological parameter very roughly analogous to the
yield stress that emerges from our STZ theory. Unfortu-
nately, Spaepen, Johnson and others(e.g., Ref.[9]) postulate
an equation of the formv̇ f ~ėpl, which again violates sym-
metry or analyticity requirements. In short, we believe that
these theories require a critical reformulation in order to en-
able a meaningful atomic-scale analysis of amorphous plas-
ticity.

In addition to reformulating earlier theories of amorphous
plasticity, one of our principal goals in this paper is to gain as
simple as possible an understanding of recent experimental
results on plastic flow in metallic glasses. In particular, we
refer to work by Kato et al. [12] on amorphous
Pd40Ni10Cu30P20, and the results of Luet al. [13], who mea-
sured properties of bulk amorphous
Zr41.2 Ti13.8 Cu12.5 Ni10 Be22.5 over a remarkably wide range
of strain rates and temperatures.

For the sake of simplicity, we restrict ourselves through-
out this paper to the quasilinear theory discussed in Ref.[1].
We also make other assumptions which, as we shall indicate
at several places in our presentation, raise fundamental issues
regarding nonequilibrium states in deforming solids.

Our order of presentation is as follows. In Sec. II, we
review the elements of the low-temperature, quasilinear

theory [1] in a way that prepares concepts and notation for
the discussion of thermal relaxation in Sec. III. Section IV is
devoted to analysis of these theoretical results and compari-
son with experiments. Finally, in Sec. V, we return to various
fundamental issues that are raised earlier in the paper or are
relevant to its conclusions. In particular, we discuss how our
original, fully nonlinear STZ theory[10] may need to be
invoked in order to make better contact with atomic-scale
mechanisms; we briefly address the important issue of shear
banding; and we discuss the question of departures from
thermodynamic equilibria in driven systems—a question that
we shall not be able to avoid in the present analysis.

II. ELEMENTS OF THE LOW-TEMPERATURE STZ
THEORY

In order that this account be reasonably self-contained,
and to provide some new perspectives about the discussion
that follows, we start by reviewing the basic elements of the
low-temperature STZ theory.

Throughout the following analysis, we take our original
STZ picture[10] more literally than perhaps is necessary. We
assume that, instead of being structureless objects as in the
earlier theories described in the Introduction, the STZ’s are
two-state systems. In the presence of a shear stress, they can
deform by a finite amount in one direction before becoming
jammed and, when jammed in one direction, they can trans-
form in the opposite direction in response to a reversed
stress. Importantly, our STZ’s are ephemeral; they are cre-
ated and annihilated during irreversible deformations of the
material.

The literal interpretation to be used here requires that all
STZ’s have approximately the same size and dynamic prop-
erties. To visualize such an STZ, think of a void in an elastic
material, and place a small group of molecules inside it in
such a way that their average free volume is somewhat larger
than that for most other molecules in the system. The void
has some degree of structural stability; it can deform elasti-
cally but, because of the configuration of molecules on its
surface, it resists collapse. Rearrangements of the molecules
that are caged within the void couple to its shape and there-
fore to the stress field in the elastic medium in which the
void is embedded. This picture suggests that the system un-
dergoes two distinct kinds of irreversible events: volume
conserving shear deformations, i.e., the STZ transformations,
and dilations or contractions in which the STZ’s are created
or annihilated.(Nothing in this picture rules out the possibil-
ity that transient dilations occur during intermediate stages of
the shear transformations.)

For simplicity, as in Refs.[1,10], we consider a two-
dimensional model, and we subject this system only to pure
shear deformations. As we shall show at the beginning of
Sec. IV, the properties of this model are easily reinterpreted
in terms appropriate to simple uniaxial stress experiments in
three dimensions, so long as we are willing to assume that
the system remains spatially uniform. We further restrict our-
selves to molecular materials in contact with thermal reser-
voirs (as opposed to granular materials or foams), so that we
may assume that an ambient temperature determines an un-
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derlying fluctuation rate. At low temperatures, thermal fluc-
tuations provide an attempt frequency for stress-induced mo-
lecular rearrangements, but are too small to activate
transitions over energy barriers in the absence of external
driving forces. This attempt frequency will never appear ex-
plicitly in our analysis but, rather, is embedded in the rate
factors to be introduced below.

For present purposes, we need to consider only situations
in which the orientation of the principal axes of the stress
and strain tensors remains fixed. That is, we do not consider
situations in which a fully tensorial version of the STZ
theory will be necessary, as in the necking calculations re-
ported in Ref.[14]. Therefore it is sufficient to assume that
the population of STZ’s consists simply of zones oriented
along the two relevant principal axes of the stress tensor.
Exactly the same equations as the ones we shall use here can
be derived starting from the assumption that thea priori
distribution of orientations of the zones is continuous and
symmetric[15,16]. Without loss of generality therefore we
let the deviatoric stress be diagonal along thex, y axes; spe-
cifically, let sxx=−syy=s and sxy=0. Then choose the “+”
zones to be oriented(elongated) along thex axis, and the “−”
zones along they axis; and denote the population density of
zones oriented in the “+/−” directions by the symboln±.

With these conventions, the plastic strain rate is:

ėxx
pl = − ėyy

pl ; ėpl =
l

t0
fRs− sdn− − Rssdn+g. s2.1d

Herel is a material-specific parameter with the dimensions
of volume (or area in strictly two-dimensional models),
which must be roughly the same order of magnitude as the
volume of an STZ, that is, a few cubic or square atomic
spacings. The remaining factor on the right-hand side of Eq.
(2.1) is the net rate per unit volume at which STZ’s trans-
form from “−” to “+” orientations.Rssd /t0 andRs−sd /t0 are
the rates for “+” to “−” and “−” to “+” transitions respec-
tively, wheret0 is the time scale that characterizes the low-
temperature plastic response. For simplicity, we write these
rates as explicit functions of only the deviatoric stresss,
although they depend implicitly on the temperature and pres-
sure and perhaps other quantities.

The equation of motion for the populationsn± generally
must be a master equation of the form

t0 ṅ± = Rs7sdn7 − Rs±sdn± + Gss, . . . dSn`

2
− n±D .

s2.2d

The first two terms on the right-hand side are the stress-
driven transition rates introduced in the preceding paragraph.
There is no analog of these terms in Eq.(1.2). They describe
volume-conserving, pure-shear deformations which preserve
the total population of the STZ’s. The last two terms in pa-
rentheses, proportional toG, describe creation and annihila-
tion of STZ’s. In the low-temperature theory,G is nonzero
only when the plastic strain rate is nonzero; the molecular
rearrangements required for creating or annihilating STZ’s
cannot occur spontaneously, that is, in the absence of exter-
nal driving forces.

The assumption in Eq.(2.2) that the annihilation and cre-
ation rates are both proportional to the same functionG has
serious implications in this theory. Among those implications
is the requirement thatn` be a strain-rate independent con-
stant. Note thatn` is the total density of zones generated in a
system that is undergoing steady plastic deformation. It is not
the same as the quantityneq introduced in Eq.(1.2), which is
the equilibrium density at nonzero temperature and zero
strain rate, and ordinarily is said to go rapidly to zero as the
temperature decreases below the glass transition. On the
other hand,n` is a property of low-temperature materials at
nonzero strain rates.

The form in which we have cast Eq.(2.2) is consistent
with a fundamental assumption that we are making about the
nature of our low-temperature theory. Specifically, we are
assuming that the only relevant time scales at low tempera-
tures aret0 and the inverse of the strain rate. This means
that, under steady-state conditions at strain rates less than
some value of ordert0

−1, the number of events in which the
molecules rearrange themselves is not proportional to the
time but to the strain. That picture seems intuitively reason-
able. If the system requires a certain number of STZ-like
rearrangements in order to achieve some deformation, then it
should not matter(within limits) how fast that deformation
takes place. The picture breaks down, of course, when there
are competing rearrangement mechanisms. For example, we
shall see that the density of STZ’s becomes strain-rate de-
pendent when we introduce thermal fluctuations, because
such fluctuations will induce rearrangements at a rate that is
independent of the strain rate. We also expect that the picture
may fail in polymeric glasses or polycrystalline solids, where
more complex components may introduce extra length and
time scales.

This simple dimensional argument, leading to a nonzero,
rate-independent value ofn`, already hints at a fundamental
difficulty in theories of the kind summarized by Eqs.(1.1)
and (1.2). These theories have no sensible low-temperature
limit because both the strain rate in Eq.(1.1) and the rate
factor kr in Eq. (1.2) vanish rapidly asT→0. Yet, even at
temperatures so low that thermal fluctuations cannot cause
molecular rearrangements, such systems must deform irre-
versibly when sheared.

We shall use the energetic arguments introduced in Ref.
[1] to determine the factorG in Eq. (2.2), but first we must
discuss the state variables and specific forms for the transi-
tion rates. We define dimensionless state variables by writing

L ;
n+ + n−

n`

, D ;
n+ − n−

n`

. s2.3d

In a more general treatment[14,16,17], L remains a scalar
density, butD becomes a traceless symmetric tensor with the
same transformation properties as the deviatoric stress. We
also define

S ;
1

2
fRs− sd − Rs+ sdg, C ;

1

2
fRs− sd + Rs+ sdg, T ;

S
C .

s2.4d

Then the STZ equations of motion become
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t0 ėpl = e0 CssdfL Tssd − Dg; s2.5d

t0Ḋ = 2 CssdfL Tssd − Dg − Gss,L,DdD; s2.6d

and

t0L̇ = Gss,L,Dds1 − Ld. s2.7d

Here,e0;l n` is roughly the fraction of the total volume of
the low-temperature system in steady-state flow that is cov-
ered by the STZ’s. This is a material-specific quantity. Ife0 is
small, then the disorder induced in the system by deforma-
tion is small. Conversely, ife0 is large, then the STZ-like
defects cover the system and the material in some sense
“melts” under persistent straining.

Throughout this paper, we shall use only what we call the
“quasilinear” version of these equations[18]. That is, we
note thatTssd andCssd are, respectively, antisymmetric and
symmetric dimensionless functions ofs, and write

Tssd >
s

sy
; s̃; Cssd > 1, s2.8d

where sy will turn out to be the yield stress. The choice
Cssd>1 is, in effect, our definition of the time constantt0.
As pointed out in earlier papers[1,18], this quasilinear ap-
proximation has important shortcomings. Neglecting the
stress dependence ofCssd means that we overestimate the
amount of plastic deformation that occurs at small stresses
and therefore also overestimate the rate at which orienta-
tional memory disappears in unloaded systems. Moreover,
the quasilinear approximation is too simplistic to be related
directly to atomic mechanisms, a point that we shall com-
ment upon further in Sec. V. Nevertheless, the quasilinear
theory has the great advantage that it is mathematically trac-
table and easy to interpret. It will serve to illustrate the main
points that we wish to make in this paper, but aspects of the
nonlinearities associated withC andT will need to be rein-
troduced before we shall be able to understand fully the non-
equilibrium behavior of amorphous solids.

Equations(2.5)–(2.7) now become

t0ėpl = e0sLs̃− Dd; s2.9d

t0Ḋ = 2sLs̃− Dd − Gss̃,L,DdD; s2.10d

and

t0L̇ = Gss̃,L,Dds1 − Ld. s2.11d

The quantityn` G /t0 is the STZ creation rate and therefore
plays exactly the same role as the phenomenological defect
production rates that we discussed—and complained
about—in the Introduction. We can derive an expression for
that rate by using the energy-balance argument introduced in
Ref. [1]. As before, we start by writing the first law of ther-
modynamics in the form

2ėpls=
2e0sy

t0
sLs̃− Dds̃= e0sy

d

dt
csL,Dd + Qss̃,L,Dd.

s2.12d

The left-hand side of Eq.(2.12) is the rate at which plastic
work is done by the applied stresss=sys̃. On the right-hand
side, e0 sy c is the state-dependent recoverable internal en-
ergy, andQ is the dissipation rate. So long as the STZ’s
remain uncoupled from the heat bath,Q must be positive in
order for the system to satisfy the second law of thermody-
namics, that is, for the work done in going around a closed
cycle in the space of variabless, L, and D to be non-
negative.

As argued in Ref.[1], the simplest and most natural
choice forG—and, so far as we can tell, the only one that
produces a sensible theory—is that it be the energy dissipa-
tion rate per STZ. That is,

Qss̃,L,Dd =
e0sy

t0
LGss̃,L,Dd. s2.13d

With this hypothesis, we can use Eqs.(2.10) and (2.11) to
write Eq. (2.12) in the form

2sLs̃− Dds̃=
]c

]L
Gs1 − Ld +

]c

]D
f2sLs̃− Dd − GDg + LG.

s2.14d

Then, solving forG, we find

G =
2sLs̃− Ddss̃− ]c/]Dd

L + s1 − Lds]c/]Ld − Ds]c/]Dd
. s2.15d

To assure thatG remains non-negative for alls̃, we must let

]c

]D
=

D

L
, s2.16d

so that the numerator becomes 2L ss̃−D /Ld2. Then (see
Ref. [1]), we choose

csL,Dd =
L

2
S1 +

D2

L2D , s2.17d

so that

Gss̃,L,Dd =
4LsLs̃− Dd2

s1 + LdsL2 − D2d
. s2.18d

This result has the physically appealing feature that it di-
verges whenD2 approaches its upper limitL2, thus enforcing
a natural boundary for dynamical trajectories in the space of
the state variablesL andD.

It is convenient at this point to replace the variableD by
m=D /L, so that the equations of motion become

t0ėpl = e0Lss̃− md; s2.19d

t0ṁ= 2ss̃− mdF1 −
2mss̃− md

s1 + Lds1 − m2dG; s2.20d

and
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t0
L̇

L
= F4ss̃− md2

1 − m2 GS1 − L

1 + L
D . s2.21d

At the stable fixed point of Eq.(2.21), L=1, Eq. (2.20) be-
comes

t0ṁ=
2ss̃− mds1 − s̃md

s1 − m2d
, s2.22d

which exhibits explicitly the exchange of stability ats̃=1
between jammed states withm= s̃ and flowing states with
m=1/s̃.

III. THERMAL EFFECTS

We return now to Eq.(2.2), the low-temperature master
equation for the STZ population densitiesn±, and ask what
changes need to be made in order to incorporate thermal
effects at temperatures near the glass transition. One obvious
possibility is to modify the rate factorsRs±sd to include ther-
mal activation across energy barriers; indeed, we eventually
shall have to do that(see Sec. V). However, our quasilinear
approximation makes it difficult to do this systematically.

The more important thermal effects are those that are
completely missing in Eq.(2.2), specifically, the thermally
assisted relaxation—i.e., aging—of the STZ variables that
can occur spontaneously in the absence of external driving or
plastic strain rate. There are two ways in which relaxation
must occur. First, thermal fluctuations ought to act much like
deformation-induced disorder in causing then± to relax to-
ward their steady-state valuesn` /2. Second, there should be
some annealing mechanism that causes the total STZ popu-
lation to decrease. Both of these mechanisms involve dila-
tions and contractions of the kind associated with creation
and annihilation of STZ’s; thus, again for simplicity, we as-
sume that there is just a single relaxation rate, denoted
rsTd /t0, that characterizes them. As we shall see, that rate
will have the Vogel-Fulcher or Cohen-Grest[19] form, rap-
idly becoming extremely small as the temperatureT falls
below the glass temperature. Specifically we expect thatrsTd
has the form

rsTd = r0 expS−
DVdil

v fsTd
D , s3.1d

wherer0 is a dimensionless prefactor,DVdil is the activation
volume required to nucleate a dilational rearrangement, and
v fsTd is usually identified as the free volume. The Cohen-
Grest approximation forv fsTd has the form

v fsTd
v0

= T − T0 + ÎsT − T0d2 + T1T, s3.2d

wherev0, T0 and T1 are fitting parameters. This expression
was found by Masuhret al. [20] and Luet al. [13] to provide
a fairly accurate fit to their data.(We shall not use this for-
mula explicitly in what follows.)

In accord with the preceding remarks, our proposed form
for the modified master equation is

t0ṅ± = Rs7sdn7 − Rs±sdn± + fGss,L,Dd + rsTdgSn`

2
− n±D

− k rsTdSn+ + n−

n`
Dn±. s3.3d

The first and second appearances ofrsTd on the right-hand
side of Eq.(3.3) correspond, respectively, to its two roles
described above. The second of these terms, the quadratic
form with a dimensionless multiplicative constantk, is simi-
lar to then2 term on the right-hand side of Eq.(1.2). This
bimolecular mechanism has been discussed extensively in
Refs.[21–23].

Equations(2.9)–(2.11) now become

t0ėpl = e0sLs̃− Dd s3.4d

(unchanged from before);

t0Ḋ = 2sLs̃− Dd − fsGs̃,L,Dd + rsTdgD − krsTdLD;

s3.5d

and

t0L̇ = fGss̃,L,Dd + rsTdgs1 − Ld − k rsTdL2. s3.6d

The next step is to repeat the energy-balance analysis of
Eqs.(2.12)–(2.18) to recompute the functionGss̃,L ,Dd. We
assert that Eq.(2.13) relating G and the dissipation rateQ
must remain unchanged by the addition of the thermal relax-
ation terms in Eq.(3.3). That is,G in Eq. (3.3) must be the
energy dissipated per STZ when plastic work is done on the
system. The expression for the internal energycsL ,Dd must
remain as given by Eq.(2.17) because Eq.(2.16) is still
required by the non-negativity condition. The result, after
inserting the terms proportional torsTd into Eqs.(2.14) and
(2.15), and transforming tom=D /L, is

Gss̃,L,md + rsTd

= L F4 ss̃− md2 + 2 rsTd + k rsTdLs1 + m2d
s1 + Lds1 − m2d G

; LG̃ss̃,L,m,Td. s3.7d

Note thatG̃ is non-negative, as is necessary because it is a
prefactor for the annihilation and creation rates. The non-
negativity condition no longer strictly applies toG itself be-
cause the system is now coupled to the heat bath.

The new equations of motion form andL are

t0 ėpl = e0 Lss̃− md, s3.8d

t0ṁ= 2ss̃− md − mG̃ss̃,L,m,Td, s3.9d

and

t0
L̇

L
= G̃ss̃,L,m,Tds1 − Ld − k rsTdL. s3.10d

As in previous presentations, we recover Bingham-like
plasticity for smallr and for stresses abovesy, i.e., s̃.1. In
that case, the equations of motion revert to Eqs.
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(2.19)–(2.21) so that, in steady state,L→1 and m→1/s̃.
Thus

ėpl <
e0

t0
Ss̃−

1

s̃
D; s̃. 1. s3.11d

This theory exhibits no power-law rheology for flow above
the yield stress. As we shall see, however, it does exhibit
behavior that looks like superplasticity.

The more interesting behavior is thermally assisted creep
below the yield stress,s̃,1, and the transition between creep
and flow nears̃=1. For present purposes, we only need to
consider cases in whichrsTd!1. In the steady-state creep
region wheres̃!1 andm> s̃, Eqs.(3.7) and(3.9) tell us that
s̃−m is small of ordermr. Then the quantityss̃−md2 in the

numerator ofG̃ is negligible compared to the other terms.
The steady-state version of Eq.(3.10) becomes simply

1 − LNskd < k LN
2skd; LNskd =

1

2 k
sÎ1 + 4 k − 1d,

s3.12d

where the subscriptN denotes the low-stress Newtonian
limit.

In the complete absence of a driving stresss̃, the exact
steady-state solutions of Eqs.(3.9) and (3.10) arem=0 and
L=LNskd. Thus the analog ofneq in Eq. (1.2) is n` LNskd,
which is a temperature-independent quantity instead of be-
ing, as is usually assumed, a rapidly varying function of the
form expf−DVdil /v fsTdg. Indeed, the temperature dependence
of neq is often invoked in the context of equations such as
Eq. (1.2) to interpret calorimetric data[9,24]. Because of its
lack of a temperature-dependentn`, our present theory can-
not predict the specific heat peak near the glass transition
that is seen by the latter authors. We could fix this problem in
an ad hoc manner by assigning some temperature depen-
dence ton` and/or k. However, such a procedure would
simply gloss over the fundamental difficulty that we are fac-
ing here—that the limiting steady-state value ofL must de-
pend upon the order in which we take the limitsT→0 and
ėpl→0, but that no such behavior appears in our equations.
This is the same situation that we discussed in the paragraphs
following our first introduction ofn` in Eq. (2.2); we shall
return to it in Sec. V. For the present, we leave the situation
as is, with a temperature-independentLN, and with the un-
derstanding that we cannot yet use these equations to de-
scribe behavior much above the glass temperature.

To compute the viscosity, it is easiest first to setṁ=L̇

=0 in Eqs.(3.9) and (3.10) and eliminateG̃ to find

ss̃− mds1 − Ld =
krsTd

2
mL, s3.13d

which is an exact relationship between the steady-state val-
ues ofs̃, L andm at any strain rate. Combining these results
in the limit s̃<m→0, we compute the Newtonian viscosity
hN:

hN ; lim
ėpl→0

s

2 ėpl =
syt0

e0rsTd
, s3.14d

which confirms our expectation thatrsTd is the rate function
that governs viscous relaxation.

IV. ANALYSIS AND COMPARISON WITH EXPERIMENTS

Before making comparisons with experiments, we must
return to the question of how to generalize our two-
dimensional theory into one that can be applied to three-
dimensional experiments. The basic structure of our equa-
tions of motion must be preserved, with due respect for the
relevant symmetries, in any generalization of this theory to
higher dimensions. That is, our variabless̃, ėpl, andm must
become traceless symmetric tensors, andL must remain a
scalar, so that Eqs.(3.8) and (3.9) become

t0 ėi j
pl = e0 Lss̃i j − mijd, s4.1d

and

t0 ṁij = 2ss̃i j − mijd − G̃ss̃,L,m,Tdmij . s4.2d

The energy-balance analysis yields

G̃ss̃,L,m,Td

=
2ss̃i j − mijdss̃i j − mijd + 2rsTd + krsTdLs1 + m̄2d

s1 + Lds1 − m̄2d
,

s4.3d

where we are using the summation convention, andm̄2

=s1/2dmij mij .
The experiments in which we are interested involve only

uniaxial stresses, say, in thex direction. If there are no trac-
tions in they or z directions, and if we can ignore spatial
nonuniformities, then the total stresssi j is diagonal with
sxx=s, syy=szz=0. Similarly, for the deviatoric stress,s̃yy
= s̃zz=−s̃xx/2; andmyy=mzz=−mxx/2. Thusm̄2=3/4 mxx

2 . We
can now make thexx components of Eqs.(4.1) and (4.3)
look exactly like Eqs.(3.8), (3.9), and (3.7) by definingm2

=m̄2, m=Î3/4 mxx, s̃=Î3/4 s̃xx, ėpl= ėxx
pl, and by replacinge0

by e08=Î4/3 e0. Note that the dynamical exchange of stabil-
ity, i.e., plastic yielding, still occurs ats̃=1; thus our scaling
of the stress bysy remains correct. When comparing to the
data, which is presented in terms of the uniaxial stresss
=sxx, we write s=s3/2dsxx=Î3sys̃ or, equivalently,s=sys̃,
wheresy is the tensile yield stress. Equation(3.14), however,
remains unchanged withe0 rather thane08, because viscosity
now is expressed ash=sxx/2ėxx

pl =s/Î3ėpl.
To illustrate the principal results of our analysis, we first

follow the lead of Katoet al. [12] and Lu et al. [13] by
looking for scaling in the steady-state behavior of our sys-
tem. To be specific about what we mean here, we show in
Figs. 1 and 2 sets of stress-strain curves for various tempera-
tures and fixed strain rates. As we shall explain shortly, these
figures are to be compared with Figs. 1 and 2 in Ref.[13].
(See also Fig. 1 in Ref.[9] and Fig. 1 in Ref.[12].) A general
feature of these curves is that, when the strain rate is held
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constant, the stress rises through a maximum, decreases as
the material softens, and then reaches a steady-state value.
We shall discuss the initial transients later in this section, but
look first at the late-stage, steady-state behavior.

We compute the steady-state flow stress as a function of

the strain rate by solving Eqs.(3.9) and (3.10) with ṁ=L̇
=0. Then, as in Ref.[12,13], we plot s̃=s/sy as a function of
hN ėpl for eight different values of the relaxation ratersTd
corresponding to the eight different temperatures for which
data are reported in Ref.[13]. The results are shown in Fig.
3. As discovered by Katoet al. [12], all of these curves lie on
top of one another for stressess̃,1 but, in our case, they
diverge from each other in the flowing regime,s̃.1, where
the Bingham-like behavior shown in Eq.(3.11) sets in.

Figure 4(a) contains the same theoretical curves as those
shown in Fig. 3, but plotted there as tensile stress versus

scaled strain rate, and compared with experimental data
taken from Fig. 9(a) of Ref. [13]. The same theoretical func-
tions and data points are replotted in Fig. 4(b) to show the
normalized viscosity,h /hN as a function of the scaled strain
rate. The latter figure is directly comparable to Ref.[13], Fig.
9(b). Note that the range of strain rates shown in Figs. 4
corresponds to the range of the experimental data and is sub-
stantially smaller than that shown in Fig. 3. The theoretical
curve that lies above the rest at high strain rates is forT

FIG. 1. Theoretical curves of tensile stress versus strain for the
bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 at several different
temperatures as shown. The strain rate isėtotal=1310−1 s−1. For
clarity, the curves have been displaced by constant increments along
the strain axis.

FIG. 2. Theoretical curves of tensile stress versus strain for the
bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 at several different
strain rates as shown. The temperature isT=643 K. For clarity, all
but the first of these curves have been displaced by the same
amount along the strain axis.

FIG. 3. Scaling behavior in the STZ theory: shear stresss̃ as a
function of strain rate scaled byhN. This graph is plotted for the
same set of temperatures as shown in Fig. 4(a), but for a larger
range of strain rates.

FIG. 4. Tensile stress and viscosity as functions of scaled strain
rate hNėtotal. The data points for the bulk metallic glass
Zr41.2Ti13.8Cu12.5Ni10Be22.5 are taken from Ref.[13], Figs. 9(a) and
9(b). The solid curves are theoretical results computed for the same
set of temperatures as shown.
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=683 K, the highest of the temperatures reported in Ref.
[13]. The data points at that temperature all lie at scaled
strain rates that are too small to test this predicted breakdown
of the scaling law.

Our Fig. 5(a) shows individual theoretical and experimen-
tal curves of tensile stress as a function of(unscaled) strain
rate for different temperatures. Here, the experimental data
are from Ref.[13], Fig. 7. These curves are replotted in Fig.
5(b) to show(unscaled) viscosity as a function of strain rate,
analogous to Ref.[13], Fig. 8.

In constructing these figures, we have determined our the-
oretical parameters as follows:

We have used the value of the room-temperature tensile
yield stress reported in Ref.[13], sy=1.9 GPa. Thuss
=1.9s̃ GPa.

Rather than using the Cohen-Grest formula with param-
eters from Ref.[20], we have taken the limiting(vanishing
strain rate) Newtonian viscosities directly from Ref.[13],
Fig. 10, and have checked that these values(apart from one
apparently misplaced point) are consistent with the data
points in Ref.[13], Fig. 9.

Given the above constraints, we are left with only two
parameters,k and e0/t0 (or, equivalently,e08), that can be
adjusted to fit the steady-state experimental data in Ref.[13],
Fig. 7. Because we know experimental values for the limit-

ing viscositieshNsTd at different temperatures, a value for
the ratio e0/t0 in Eq. (3.14) determines the overall scale
factor for the functionrsTd. Thus our fitting procedure has
been to start by choosing values ofk ande0/t0. We then use
those values to determinersTd and to compute steady-state
solutions of Eqs.(3.9), (3.10), and (2.19). From these solu-
tions we compute steady-state stress versus strain-rate rela-
tions that can be compared with the experimental data. We
then iterate this process to find best-fit values fork and
e0/t0.

Our best-fit parameter values, obtained by the procedure
outlined above, arek=120 ande0/t0=260 s−1. Our corre-
sponding values ofrsTd, along with our estimates of the
viscosities, are shown in Table I. We emphasize that these
values are not much better than order-of-magnitude esti-
mates.

As is obvious in Fig. 5, there is scatter in the experimental
data, and there may also be systematic errors. For example,
the two points at the highest strain rates forT=663 K fall
well below our theoretical curve for that temperature while
the theoretical fits look good for the temperatures on either
side, i.e.,T=643 and 683 K. We could improve the fits to all
three of these curves by choosing a substantially larger value
of k; but we would do this at the expense of poorer fits at
lower temperatures. However, the values of the viscosities
that we can deduce from Ref.[13], Fig. 10 seem uncertain,
possibly by factors of 2 or 3; so our estimates ofrsTd and
therefore all our theoretical curves—especially those at the
lower temperatures—might be modified by more accurate
viscosity data.

Within the above uncertainties, our theoretical fits to the
experimental data are relatively insensitive to our choices of
the two parameters that we have allowed ourselves. On the
one hand, this insensitivity gives us confidence in the basic
structure of our theory; on the other hand, it means that we
cannot yet test the theory in as much detail as we would like.
For example, the yield stresssy probably ought to be a func-
tion of temperature, decreasing slowly(in contrast to the
rapidly varying viscosity) from room temperature through
the experimental range. Its behavior should be roughly like
that of the shear modulus, which must soften as the system
approaches the glass transition. Also, as we have discussed
above, we expect thate0 ultimately will be temperature de-
pendent because it is proportional ton`. We could improve
the fits, for example, at the lower temperatures shown in Fig.
5, by incorporating such temperature dependences into our
equations; but it seems to make little sense to do so without
first resolving various uncertainties in both the theory and the
experiments.

Our main conclusion from this steady-state analysis is that
we are observing a transition from thermally assisted creep
to viscoplastic flow in the neighborhood of the dynamic yield
stress. At low stresses and strain rates, the linear response

FIG. 5. Tensile stress(a) and viscosity(b) as functions of strain
rate for different temperatures as shown. The data points are for the
bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 as reported by Ref.
[13], Figs. 7 and 8. The solid lines are theoretical curves.

TABLE I. Experimental data for viscosity taken from Ref.[13], and values ofr used in the present calculations.

Temperature K 573 593 603 613 623 643 663 683

Viscosity (PaS) 4.0031014 4.0331013 8.9931012 4.0331012 7.2931011 4.2731010 3.683109 3.993108

r 1.07310−8 1.06310−7 4.77310−7 1.06310−6 5.88310−6 1.01310−4 1.17310−3 1.15310−2
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relation contains only the factorhN~1/rsTd, thus we obtain
the simple scaling. Near the yield stress, however, our theo-
retical strain rate increases by several orders of magnitude
for small increments of stress, and the experimental behavior
tracks this trend accurately. This behavior resembles super-
plasticity. Interestingly, the theoretical scaling persists
through the “superplastic” region and does not break down
until true viscoplastic flow begins.

Before returning to the transient stress-strain curves
shown in Figs. 1 and 2, we show one other steady-state pre-
diction of our theory for which there are no data in Ref.[13],
but which seems to be potentially important. In Fig. 6, we
have used our steady-state solutions form andL to plot the
dimensionless internal energyc=sL /2ds1+m2d as a function
of the strain rateėpl, for the set of temperatures used in the
preceding figures. The energyc might be measured by dif-
ferential scanning calorimetry(DSC), as has been done by
Hasan and Boyce in studies of polymeric glasses[25,26]. De
Hey et al. [9] also report DSC results, which they interpret as
measurements of free volume. We assume that Fig. 4 in Ref.
[9], apart from the scale on the vertical axis, is at least quali-
tatively the same as a graph ofc versus strain rate analogous
to our Fig. 6. The two figures are similar to one another if we
look at our theoretical curves only at small strain rates.

An important feature of our Fig. 6 is that, at fixed strain
rate,c decreases asT increases. That trend is exactly what
we expect for thermally assisted creep; the higher the tem-
perature, the fewer STZ’s are needed in order to sustain a
given flow rate, and thus the smaller the internal energy.
Note, however, that our theory predicts that all of these
curves converge to a single, temperature independent, value
c→LNskd /2 in the limit ėpl→0. On the other hand, De Hey
et al. plausibly assert that the equilibrium value of the STZ
density,neq, should be an increasing function of temperature.
If so, these curves must cross each other and the trend in
temperature dependence must be reversed at small enough
values ofėpl. An extension of these measurements to smaller
strain rates might therefore provide a test of our differing
assumptions about the STZ densityneq.

So far, we have examined only steady-state behavior. We
turn next to stress-strain curves obtained in constant strain-

rate experiments such as those shown in our Figs. 1 and 2
and in Figs. 1 and 2 of Ref.[13]. To plot these curves, we
solve

sy

E
ṡ̃= ėxx

total −Î4

3

e0

t0
Lss̃− md, s4.4d

along with Eqs.(3.9) and(3.10) to computes̃ as a function of
the total strain. We use the value of Young’s modulus given
in Ref. [13], E=96 GPa, to estimateE/sy>50. For time-
dependent calculations, we must choose a value of the time
scalet0, which multiplies the time derivatives in Eqs.(3.9)
and (3.10). To do this, we keep the ratioe0/t0 fixed at its
value obtained from the steady-state calculations, and we
adjust the value ofe0 so as to fit the transient stress-strain
curves. Our best-fit value ise0=0.7, which means thatt0
>2.7310−3 s. We emphasize that this value, like our esti-
mates fork and e0/t0, remains highly uncertain. It is pos-
sible that we may eventually be able to sharpen our estimate
of the time scalet0 by using the time-dependent stress-
relaxation data shown in Ref.[13]. In fact, we can reproduce
those results about as well as the other results shown here,
but our theory in this case is especially sensitive to our qua-
silinear approximation plus other uncertainties regarding the
experiments.

Our Figs. 1 and 2 are drawn so as to be directly compa-
rable to Figs. 1 and 2 in Ref.[13]; that is, we use the same
strain rates and temperatures. The one other parameter that
we must choose for solving Eqs.(3.9), (3.10), and(4.4) is the
initial value ofL, which we denote byL0. Theoretically, the
smallest value ofL0 that can be achieved by annealing is
LNskd=0.087(for k=120); therefore we have used this value
of L0 for these two figures. The initial values ofm and s̃ are
always chosen to be zero.

In all cases, the agreement between theory and experi-
ments seems satisfactory given the various uncertainties.
The peak heights and positions for fixed strain rateėtotal

=0.1 s−1 and varying temperatures in Fig. 1, and for fixed
temperatureT=643 K and varying strain rates in Fig. 2, are
within about ten percent of their experimental values. The
experimental curves for low temperatures and large strain
rates end where the samples break; the dashed lines in our
figures indicate our theoretical extensions of those parts of
the curves for which no experimental data is available. The
one systematic discrepancy is that our initial theoretical
slopes are smaller than the experimental ones. This is an
artifact of our quasilinear approximation, which ignores the
strong stress and temperature dependence of the factorCssd
in Eqs.(2.5) and(2.6) (see remarks in Sec. V). In the limit of
low temperatures and very small strain rates, our theory pre-
dicts this initial slope to beE/ s1+E e08 L0/2syd instead of
simply E. This does not happen in the fully nonlinear theory
presented in Ref.[10]. We have chosen not to include these
nonlinear effects in our calculations here because they
introduce additional undetermined parameters, and they are
not necessary to describe the shear softening and shear thin-
ning observed at higher stresses near the glass transition
temperature.

FIG. 6. Dimensionless energyc as a function of strain rate for
the same set of temperatures shown in the preceding figures.
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Finally, in Fig. 7, we use the material parameters deduced
above for the system studied in Ref.[13] to plot stress-strain
curves for differentL0’s, all at temperatureT=643 K and
ėtotal=3.2310−2 s−1. The differentL0’s correspond to differ-
ent initial states of disorder produced by varying the anneal-
ing times and temperatures. Presumably, annealing for longer
times at lower temperatures produces smaller values ofL0;
but it seems difficult to make quantitative estimates of this
effect. These curves may be compared qualitatively with
those shown in Ref.[9], Fig. 9, where larger initial densities
of STZ’s produce larger plastic responses and correspond-
ingly smaller overshoots during the early stages of deforma-
tion.

V. CONCLUDING REMARKS

The comparison with experiments discussed in the pre-
ceding section leads us to believe that the STZ theory cap-
tures the main features of the experimental data, but that we
shall have to improve it in specific respects if we are to
develop it into a yet more quantitative, predictive description
of plastic deformation in amorphous solids. We conclude this
paper by identifying three directions for the next phases of
these investigations.

Fully nonlinear, temperature-dependent transition rates:
When we examine the quasilinear STZ theory in the context
of a theory that includes thermal fluctuations, we see that it is
a special case in which the shear rearrangements are not
being modeled as realistically as the dilations or contrac-
tions. To see this in more detail, go back to our original Ref.
[10], fully nonlinear version of the low-temperature rate fac-
tors Rssd:

Rssd =
1

t0
expS−

DVshearssd
v f

D; DVshearssd = DV0
shear e−s/m̄,

s5.1d

whereDVshearssd is the activation volume required to nucle-
ate a shear transformation. Our idea here was that, at tem-

peratures well below the glass temperature, the transitions
between STZ states are not thermally activated but, rather,
are controlled entropically. That is, the rate factors are deter-
mined by the number of paths that the molecules within a
zone can follow in moving around each other while going
from one state to the other. The exponential factor in Eq.
(5.1) is an approximation for a weighted measure of that
number of paths. Itss dependence means that greater weight
must be given to paths moving in the direction of the stress
than opposite to it. The exponential form ofDVshearssd is the
simplest non-negative function that becomes arbitrarily small
at larges and introduces just one new parameter, the effec-
tive STZ stiffnessm̄. The quasilinear version of the theory
corresponds(roughly) to the limit of smalls and small values
of DV0

shear/v f.
Comparison of Eq.(5.1) with Eq. (3.1) indicates that the

natural way to include thermal effects inRssd is simply to let
v f have theT-dependent Cohen-Grest form shown in Eq.
(3.2). This means that, at lowT, the ratioDV0

shear/v fsTd be-
comes very large, which, in turn, implies that the functions
Cssd andTssd introduced in Eq.(2.4) become strongly stress
dependent, and the quasilinear approximations made in Eqs.
(2.8) are no longer valid. Importantly,Cssd becomes very
small for smalls, so that plastic deformation is strongly sup-
pressed at stresses appreciably below the yield stress.

The strong stress dependence ofCssd andTssd should be
especially apparent in transient behavior of the kind shown
in Figs. 1, 2, and 7. Here, the initial response to loading at
small stress will be almost entirely elastic, and plastic defor-
mation will begin only later in the process. We shall have to
use the fully nonlinear theory when undertaking more de-
tailed comparisons with these kinds of experimental results.

Shear localization: All of the analysis in this paper per-
tains to spatially homogeneous systems. In order to make
closer contact with experiments, we shall have to understand
why and when these systems become unstable against shear
banding and inhomogeneous failure modes, especially frac-
ture.

One mechanism for shear localization that we have not
mentioned in this presentation is the elastic interaction be-
tween STZ’s studied in Ref.[17]. As shown in that paper, an
STZ-like event generates a quadrupolar stress field that in-
duces other nearby events along preferred spatial directions
and suppresses events elsewhere. The result is a tendency
toward shear localization that should be interesting to exam-
ine in the context of this more general version of the STZ
theory.

A second mechanism that seems likely to play a role in
shear localization is already built into our equations of mo-
tion when we write them in terms of spatially varying fields.
From Eqs.(3.7) and (3.10), we see that the STZ densityL
grows most rapidly, within limits, in regions whereL already
is large. This feedback effect, perhaps coupled to the effect
of elastic interactions mentioned above, is our best guess at
present about how shear banding will emerge in the STZ
theory.

Effective temperature and the interpretation of neq: Fi-
nally, we return to Spaepen’s suggestion that the density of
STZ’s might be directly related to the free volume as in Eq.

FIG. 7. Tensile stress as a function of strain for several different
values of L0. Curves are plotted forėtotal=3.2310−2 s−1 at T
=643 K.
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(1.3). Note thatv f appears in that equation, not as an exten-
sive quantity related directly to the difference between the
actual volume and some hypothetical close-packed volume,
but rather as an intensive variable analogous to a tempera-
ture. For example, Mehta and Edwards[27] have introduced
an intensive variable, thermodynamically conjugate to vol-
ume, which must govern density fluctuations in relations
such as Eq.(1.3) or (3.1) in much the same way as ordinary
temperature governs energy fluctuations. Recently Shi and
Falk [28,29] have shown that while the interior of a shear
bands in molecular-dynamics simulations has a high density
of active STZ’s, the actual density in that region is negligibly
lower than in the rest of the system, but measurable struc-
tural disordering occurs in the shear band that leads to soft-
ening.

The idea thatx;v f /V
p in Eq. (1.3) might more generally

be interpreted as an effective temperature seems especially
appealing in light of our argument that the limiting steady-
state value ofL (or equivalentlyn` or neq) should depend
upon the order in which we take the limitsT→0 and ėpl

→0. More realistically, under steady-state conditions,x
might approach some nonzero limiting value and remain
there for indefinitely long times at sufficiently smallT and
for arbitrarily small but nonzeroėpl. Conversely,x (in suit-
able units) might approach the true temperature at large
enoughT or small enoughėpl.

There is increasing evidence that something like this hap-
pens in sheared foams or granular materials[30–33]. In those
systems, the usual kinetic temperature is zero because the
constituents have very large masses, but an effective tem-
perature determined by response-fluctuation relations goes to
a nonzero limit when the deformation rate becomes arbi-
trarily small. In our present system, there is a true kinetic
temperature, but below the glass transition that temperature
is so small that thermally assisted molecular rearrangements
are effectively frozen out. During irreversible processes such
as plastic deformation therefore the slow, configurational de-
grees of freedom characterized byx might fall out of equi-
librium with the fast, thermal(vibrational) degrees of free-
dom, and each may accurately be described by its own
“temperature.” We suspect that some such description of our
system will be necessary in order to resolve the two-limit
problem that we have encountered here.

ACKNOWLEDGMENTS

J.L. and L.P. were supported primarily by U.S. Depart-
ment of Energy Grant No. DE-FG03-99ER45762, and in part
by the MRSEC Program of the National Science Foundation
under award No. DMR96-32716. M.F. was supported by the
National Science Foundation under award No. DMR-
0135009, and in part by the Dow Corning Foundation.

[1] J. S. Langer and L. Pechenik, Phys. Rev. E68, 061507(2003).
[2] D. Turnbull and M. Cohen, J. Chem. Phys.52, 3038(1970).
[3] F. Spaepen, Acta Metall.25 (4), 407 (1977).
[4] F. Spaepen and A. Taub, inPhysics of Defects, edited by R.

Balian and M. Kleman, 1981 Les Houches Lectures(North-
Holland, Amsterdam, 1981), p. 133.

[5] A. S. Argon and L. T. Shi, Acta Metall.31, 499 (1983).
[6] D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, Philos. Mag.

A 44, 847 (1981).
[7] D. Deng, A. S. Argon, and S. Yip, Philos. Trans. R. Soc. Lon-

don, Ser. A329, 549 (1989).
[8] A. S. Krausz and H. Eyring,Deformation Kinetics(Wiley,

New York, 1975).
[9] P. De Hey, J. Sietsma, and A. Van Den Beukel, Acta Mater.

46, 5873(1998).
[10] M. L. Falk and J. S. Langer, Phys. Rev. E57, 7192(1998).
[11] W. L. Johnson, J. Lu, and M. D. Demetriou, Intermetallics

10(11-12), 1039(2002).
[12] H. Kato, Y. Kawamura, A. Inoue, and H. S. Chen, Appl. Phys.

Lett. 73, 3665(1998).
[13] J. Lu, G. Ravichandran, and W. L. Johnson, Acta Mater.51,

3429 (2003).
[14] L. O. Eastgate, J. S. Langer, and L. Pechenik, Phys. Rev. Lett.

90, 045506(2003).
[15] M. L. Falk, Ph.D. thesis, University of California, Santa Bar-

bara, 1998.
[16] L. Pechenik, e-print cond-mat/0305516.
[17] J. S. Langer, Phys. Rev. E64, 011504(2001).

[18] M. L. Falk and J. S. Langer, MRS Bull.25, 40 (2000)
[19] M. H. Cohen and G. S. Grest, Phys. Rev. B20, 1077(1979).
[20] A. Masuhr, T. A. Waniuk, R. Busch, and W. L. Johnson, Phys.

Rev. Lett. 82, 2290(1999).
[21] A. Taub and F. Spaepen, Acta Metall.28, 1781(1980).
[22] A. Greer and F. Spaepen, Ann. N.Y. Acad. Sci.371, 218

(1981).
[23] S. Tsao and F. Spaepen, Acta Metall.33, 881 (1985).
[24] P. A. Duine, J. Sietsma, and A. van den Beukel, Acta Metall.

Mater. 40, 743 (1992).
[25] O. A. Hasan and M. C. Boyce, Polymer34, 5085(1993).
[26] O. A. Hasan and M. C. Boyce, Polym. Eng. Sci.34, 331

(1995).
[27] A. Mehta and S. F. Edwards, Physica A157, 1091(1990).
[28] M. L. Falk, Y. Shi, in Supercooled Liquids, Glass Transition,

and Bulk Metallic Glasses, edited by T. Egami, A. L. Greer, A.
Inoue, and S. Ranganathan, Mater. Res. Soc. Symp. Proc. No.
754 (Materials Research Society, Pittsburgh, PA, 2003),
CC6.20.1-6.

[29] Y. Shi and M. L. Falk, submitted to Nat. Mater.
[30] I. K. Ono, C. S. O’Hern, D. J. Durian, S. A. Langer, A. J. Liu,

and S. R. Nagel, Phys. Rev. Lett.89, 095703(2002).
[31] L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E55,

3898 (1997).
[32] P. Sollich, F. Lequeux, P. Hebraud, and M. E. Cates, Phys. Rev.

Lett. 78, 2020(1997).
[33] L. Berthier and J.-L. Barrat, Phys. Rev. Lett.89, 095702

(2002).

THERMAL EFFECTS IN THE SHEAR-… PHYSICAL REVIEW E 70, 011507(2004)

011507-11


